My research spans a broad range of topics in environmental fluid dynamics with applications across multiple fields. Below are some selected publications from my group, organized by relevant themes.
Invasive carps
Xu, R., Wang, B., and Jacobson, R. B. Stirred Turbulence under Grid Modulation. Fluid Dynamics Research, 2025, 57 035506.
Xu, R., Chapman, D.C., Elliott, C.M., Call, B. C., Jacobson, R. B. and Wang, B. Ecological inferences on invasive carp survival using hydrodynamics and egg drift models. Sci Rep, 2024, 14, 9556. https://doi.org/10.1038/s41598-024-60189-1
Li, G.; Elliott, C. M.; Call, B. C.; Sansom, B. J.; Jacobson, R. B.; Wang, B. Turbulence near a sandbar inland in the Lower Missouri River, River Research and Applications, 2023, 1–18.
Li, G.; Elliott, C. M.; Call, B. C.; Chapman, D. C. and Jacobson, R. B.; Wang, B. Evaluations of Lagrangian egg drift models: from a laboratory flume to large channelized rivers, Ecological Modeling, 2023, 475, 110200.
Li, G.; Wang, B.; Elliott, C. M.; Call, B. C.; Chapman, D. C. and Jacobson, R. B. A three-dimensional Lagrangian particle tracking model for predicting transport of eggs of rheophilic-spawning carps in turbulent rivers, Ecological Modeling, 2022, 470, 110035.
Freshwater mussels
Sun, Q., Wang, B., Sansom, B. J., Trauth, K., Brown, H., Zhu, W., Kunz, J., Barnhart, M.C., McMurray, S., Roberts, A.D., Shulse, C.D., Knerr, C.J., Steevens, J.A. and Deng, B. (2025). Evaluating episodic sediment deposition zones in freshwater mussel habitats across Missouri, USA. Journal of Ecohydraulics, 1–15. https://doi.org/10.1080/24705357.2025.2462298
Wang, B., B. J. Sansom, W. Zhu, J. Kunz, M. C. Barnhart, H. Brown, S. McMurray, A. D. Roberts, C. Shulse, C. J. Knerr, K. Trauth, J. A. Steevens, B. Deng, A model for evaluation of sediment exposure and burial for freshwater mussels from heavy particle sedimentation, Ecological Modelling, 2024, 493, 110751, https://doi.org/10.1016/j.ecolmodel.2024.110751.
Zhu, W., Kunz, J., Brunson, E., Barnhart, C., Brown, H., McMurray, S., et al. (2023). Impacts of acute and chronic suspended solids exposure on juvenile freshwater mussels. Science of The Total Environment, 905, 167606. https://doi.org/10.1016/j.scitotenv.2023.167606
Underwater PIV system
Ying, X., Reasad, M., and Wang, B. Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps, Limnology and Oceanography: Methods, 2025, 23: 139-154. https://doi.org/10.1002/lom3.10670
Wang, B. and Liao, Q. Field observations of turbulent dissipation rate profiles immediately below the air‐water interface, JGR: Oceans, 2016, 121, 4377-4391.
Wang, B.; Fillingham, J. H.; Liao, Q. and Bootsma, H. A. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity, JGR: Oceans, 2015, 120, 2129-2146.
Wang, B., Q. Liao, J. Xiao, and H. A. Bootsma, 2013: A Free-Floating PIV System: Measurements of Small-Scale Turbulence under the Wind Wave Surface. J. Atmos. Oceanic Technol., 30, 1494–1510.
Liao, Q.; Wang, B. and Wang, P. In situ measurement of sediment resuspension caused by propeller wash with an underwater Particle Image Velocimetry and an Acoustic Doppler Velocimeter. Flow Measurement and Instrumentation. 2015, 41, 1-9.
Wang, B., Liao, Q., Bootsma, H.A. et al. A dual-beam dual-camera method for a battery-powered underwater miniature PIV (UWMPIV) system. Exp Fluids 52, 1401–1414 (2012).
Underwater cameras
Wang, B.; Socolofsky, S. A.; Brerier J. A. and Seewald, J. S. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging, JGR: Oceans, 2016, 121, 2203-2230.
Wang, B. and Socolofsky, S. A. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics. Deep-sea Research Part I. 2015, 104, 134-148.
Microplastics, oil, airborne viruses
Beheshtimaal, A., Alamdari, N., Wang, B., Kamali, M. and Salehi, M. Understanding the dynamics of microplastics transport in urban stormwater runoff: Implications for pollution control and management, Environmental Pollution, 2024, 356, 124302.
Nguyen, X.D., Le, B., Yang, Q., Wang, B., and Wan, X.F. PathoSift Pro: A novel size-based bioaerosol sampler for effectively detecting infectious airborne influenza virus. Virology, 2025, 610, 110609.
Wang, B.; Wu, H. and Wan, X.-F. Transport and fate of human expiratory droplets—A modeling approach, Physics of Fluids, 2020, 32, 083307.
Wade, T. L.; Morales-McDevitt, M.; Bera, G.; Shi, D.; Sweet, S.; Wang, B.; Gold-Bouchot, G.; Quigg, A. and Knap, A. H. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation, Heliyon, 2017, 3(10),e00419.
Seed dispersal by winds
Wang, B.; Sullivan, L.; Wood, J. D. Modeling wind-driven seed dispersal using a coupled Lagrangian particle tracking and 1-D k-Ɛ turbulence model, Ecological Modelling, 2023, 486, 110503.
Faraji Dizaji, Wang, B., Sullivian, L. L., and Kellogg, E. A. Drag coefficient of bent-awn plumegrass (Saccharum contortum) seeds in wind, Physics of Fluids, 2024, 36, 101905.
Wind-waves & air-water interactions
Do, J.; Wang, B. and Chang, K. A. Turbulence over young wind waves dominated by capillaries and micro-breakers, Journal of Fluid Mechanics, 2024;985:A22. doi:10.1017/jfm.2024.308
Wang, B. and Liao, Q. Field observations of turbulent dissipation rate profiles immediately below the air‐water interface, JGR: Oceans, 2016, 121, 4377-4391.
Wang, B.; Fillingham, J. H.; Liao, Q. and Bootsma, H. A. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity, JGR: Oceans, 2015, 120, 2129-2146.
Hydrocarbon seeps and gas leaks
Ying, X., Reasad, M., and Wang, B. Development and laboratory assessment of a subsea particle image velocimetry system for bubble and turbulence measurements in marine seeps, Limnology and Oceanography: Methods, 2025, 23: 139-154. https://doi.org/10.1002/lom3.10670
Jun, I., Wang, B., Gros, J., Dissanayake, A. L., & Socolofsky, S. A. (2025). Modeling the dissolution and transport of bubbles emitted from hydrocarbon seeps within the hydrate stability zone of the oceans. Journal of Geophysical Research: Oceans, 130, e2024JC021942. https://doi.org/10.1029/2024JC021942
Wang, B.; Jun, I.; Socolofsky, S. A.; DiMarco, S. F. and Kessler, J. D. Dynamics of Gas Bubbles From a Submarine Hydrocarbon Seep Within the Hydrate Stability Zone, Geophysical Research Letters, 2020, 47 (18),e2020GL089256.
Wang, B.; Rezvani, M.; Bierlein, K. A.; Bryant, L. D., Little, J. C.; Wuest, A. and Socolofsky, S. A. Effects of bubble plumes on lake dynamics, near-bottom turbulence, and transfer of dissolved oxygen at the sediment-water interface, Water Resources Research, 2023, 59, e2022WR032861.
Wu, H.; Wang, B.; Dissanayake, A. L. Dynamics of underwater gas blowout in sonic regime: a laboratory-scale study. Journal of Hydraulic Engineering, 2023, 149(1), doi:10.1061/JHEND8.HYENG-13074.
Razaz, M.; Di Iorio, D.; Wang, B.; MacDonald, I. Temporal variations of a natural hydrocarbon seep using a deep-sea camera system, Journal of Atmospheric and Oceanic Technology, 2020, 37 (9), 1737-1751.
Razaz, M.; Di Iorio, D.; Wang, B.; Asl, S. D. and Thurnherr, A. M. Variability of a natural hydrocarbon seep and its connection to the ocean surface, Scientific Reports, 2020, 10 (1), 1-13.
Leonte, M; Wang, B.; Socolofsky, S.A.; Mau, S.; Breier, J.A.; Kessler, J.D. Using Carbon Isotope Fractionation to Constrain the Extent of Methane Dissolution Into the Water Column Surrounding a Natural Hydrocarbon Gas Seep in the Northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems. 2018, 19, 4459– 4475.
Wang, B.; Socolofsky, S. A.; Lai, C.; Adams, E.; Boufadel, M. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts, Marine Pollution Bulletin, 2018, 131, 72-86.
Wang, B.; Socolofsky, S. A.; Brerier J. A. and Seewald, J. S. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging, JGR: Oceans, 2016, 121, 2203-2230.
Wang, B. and Socolofsky, S. A. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics. Deep-sea Research Part I. 2015, 104, 134-148.
Bubbly flow and bubble plume
Wu, H.; Wang, B.; Di Iorio, D.; Razaz, M. Effect of zero-mean-shear turbulence on rise velocity of in-chain bubbles from marine natural seeps, Ocean Engineering, 2023, 280, 114840.
Liu, M.; Wang, B.; Tan, L. Correlation of drag coefficient between rising bubbles in chain. Physics of Fluids, 2022, 34(4), 043314.
Wu, H.; Wang, B.; DiMarco, S. F. and Tan, L. Impact of bubble size on turbulent statistics in bubble plumes in unstratified quiescent water. International Journal of Multiphase Flow, 2021, 103692.
Wu, H.; Wang, B. Spectral turbulence kinetic energy budget and scale-based velocity decomposition for turbulence in bubble plumes, Physics of Fluids, 2023, 35, 063301.
Li, G.; Wang, B.; Wu, H. and DiMarco, S. F. Impact of bubble size on the integral characteristics of bubble plumes in quiescent and unstratified water. International Journal of Multiphase Flow, 2020, 103230.
Wang, B.; Socolofsky, S. A. Characteristics of mean flow and turbulence in bubble-in-chain induced flows, Physical Review Fluids, 2019, 4 (5), 054302.
Wang, B.; Lai, C.; Socolofsky, S. A. Mean velocity, spreading and entrainment characteristics of weak bubble plumes in unstratified and stationary water. Journal of Fluid Mechanics, 2019, 874, 102-130
Wang, B. and Socolofsky, S. A. On the bubble rise velocity in a continually released bubble chain in still water and with crossflow. Physics of fluids, 27, 103301 (2015).